Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2018 - March 2019)

Subject - Chemistry - I Paper : Physical Chemistry

Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Teacher - Prof. Deepanshu Pandey Topic	
1	Unit 1		
2		•	
3		Logarithm relations (rules & types)	
4		Use of log table and antilog table in calculation	
5		Curve sketching (Straigth line and linear graphs), Calculation of slopes Differentiation of functions like Kx,sin x, log x	
6		Multiplication and division in differentiation	
7		maxima and minima	
8		partial differentiation, Integration of some useful/ relevent functions	
9		Factorials	
10		Probability	
11		Revision of chapter after completion of unit	
12		B. Gaseous States and Molecular Velocitites:	
13		Critical Phenomenon: PV isotherm of ideal gases	
14		Andrew's experiment	
15		Continuity of state	
16		Isotherms of van der waal's equation	
17		relationship between critical constants and vander waals constants	
18		Root mean square, average & most probable velocitites	
19	Unit 1	Qualitative discussion of the Maxwell's distribution of molecular velocities	
20	Unit 1	collision numbers, mean free path and collision diameter	
21		A. Liquid States: Intermolecular forces, structure of liquids, Liquid crystals	
22		Difference between liquid crystal, solid & liquid	
23		classification, structure of nematics and cholestric phases	
24		Thermography, & seven segment cell	
25		B. Solid State: Defination of space lattice, Unit cell	
26		Laws of crystallography: (a) Law of constancy of interfacial angles,	
27		(b) law of rationality of indices (c) law of symmetry	
28		Symmetry elements in crystal, ionic solid structures, Radius Ratio effect	
29		Coordination number, limitation of radius rule lattice defects	
30		Revision of chapter after completion of unit	
31		Chemical Kinetics: Chemical kinetics and its scope, rate of a reaction	
32		Factors affecting rate : Conc, temp., solvent, light, catalyst, pressure	
33		Dependence of rate on concentration,	
34		Mathematical characteristic of simple chemical reaction: Zero order, First order, Second, Pseudo	
35		half life and mean life, Determination of the order of reaction	
36		Differential method, half life method	
37		Determination of the order of reaction by integration method	
38		study of chemical kinetics by polarimetry	
39	Unit 3	study of chemical kinetics by spectrophotometery	
40		Effect of temperature on rate of reaction	
41		Arrhenius equation,Concept of activation energy	
42		Simple collision theory, transition state theory	
43		Revision of chapter after completion of unit	
44	Unit 4	Radioactivity and Nuclear Chemistry: Natural and artificial radioactivity	
45	Unit 4	radioactive radiations, detection and measurmentof radioactivity	
46	Unit 4	Group displacement law of soddy	
47	Unit 4	radioactive disintegration, nuclear reaction : nuclear fussion & nuclear fission	
48	Unit 4	half life period, isotopes, isobars and isomers	
49	Unit 4	application of radiochemistry	
50	Unit 4	Revision of chapter after completion of unit	
51	Unit 5	A. Chemical Equilibrium: Law of mass action, Equilibrium constant	
52	Unit 5	Le chatelier's Principles	

53	Unit 5	B. Colloidal Solutions: Classification, lyophilic and lyophobic colloids
54	Unit 5	Properties: kinetics, optical
55	Unit 5	Properties: electrical, coagulation
56	Unit 5	Hardy- Schulze rule, Gold number
57	Unit 5	emulsions, gels and sols
58	Unit 5	application of colloids
59	Unit 5	Revision of chapter after completion of unit

Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2018 - March 2019)

Subject - Chemistry - II Paper : Inorganic Chemistry Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Topic		
1	Unit 1	(a) Atomic Structure: Dual Nature of matter, idea of de Broglie matter waves		
2	Unit 1	Heisenberg uncertainity principle, atomic orbital		
3	Unit 1	Schrodinger wave equation, Significance of \bar{Y} and \bar{Y}		
4	Unit 1	quantum numbers, radial and angular wave functions		
5	Unit 1	probability distribution curves, shapes of s,p,d, orbitals		
6	Unit 1	Aufbau and pauli exclusion principles, Hund's multiplicity rule		
7		Electronic configuration of the elements, effective nulcear charge		
8	Unit 1	(b) Periodic Properties: Atomic and ionic radii, ionization energy		
9		electron affinity, electronegativity- defination, methods of determination or evaluation		
10		treands in periodic table and applications in predicting and explaing chemical behavioor		
11		Revision after the completion of the unit.		
12		(a) Chemical Bonding Part I: Covalent Bond- Valence bond theory and its limitations		
13		directional characteristic of covalent bond		
14		various types of hybridization and shapes of simple inorganic molecules and ions		
15		Valence shell electron pair repulsion (VSEPR) theory to NH3		
16		Valence shell electron pair repulsion (VSEPR) theory to H3O,SF4,CIF3 and H2O		
17		MO theory, Homonuclear and heteronuclear (CO and NO)4 diatomic molecules		
18	Unit 2	multicenter bonding in elctron deficient molecules		
19	Unit 2	bond strength and bond energy		
20		(a) Chemical Bonding Part II: Ionic Solids: Ionic structures, radius ratio effect		
21		coordination number, limitation of radius ratio rule		
22		lattice defects, semi conductors, lattice energy		
23		Born Haber cycle,		
24		solvation energy & solubility of ionic solids		
25		polarizing power and polarisability of ions		
26		Fajan's rule, metallic bond-free electron, valence bond		
27		Band theories		
28		(b) Weak Interaction- Hydrogen bonding, van der waals forces		
29		Chemistry of Noble Gases: chemical properties of the noble gases		
30		chemistry of xenon		
31		structure and bonding in xenon compounds		
32	Unit 4	1.S-Block Elements : Comparative study Li and Mg		
33	Unit 4	diagonal relationships, slient features of hydrides, solvation and complexation		
34	Unit 4	tnedencies including their function in biosystemsan introduction to alkyls and aryls		
35	Unit 4	2.P-Block Elements I : Comparative study Be and Al		
36	Unit 4	diagonal relationship of groups 13-17 elements		
37	Unit 4	Compounds like hydrides, oxides		
38	Unit 4	oxyacids of groups 13-16		
39	Unit 4	halide of groups 13-16		
40	Unit 5	p-Block Elements part II: Hydrides of boron-diborane and higher boranes		
41	Unit 5	Hydrides of boron-diborane and higher boranes		
42	Unit 5	borazine borohydrides		
43	Unit 5	Fullerenes, Fluorocarbons		
44	Unit 5	silicates (structural principle)		
45	Unit 5	tetrasulphur tetranitride		
46	Unit 5	Basic properties of haolgens		
47	Unit 5	Interhalogens and polyhalides		
48	Unit 5	Revision after the completion of the unit.		

Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2018 - March 2019)

${\bf Subject - Chemistry - III } \quad {\bf Paper : Organic \ Chemistry}$

Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Teacner - Prof. Deepansnu Pandey Topic	
1		Structure and Bonding : Hybridization	
2		Bond lengths and bond angles, bond energy	
3		localized and delocalized chemical bond	
4		inclusion compounds, clatherates	
5		charge transfer complexes	
6		resonance, hyperconjugation	
7		inductive, electromeric, mesomeric and steric effect	
8		Mechanism of Organic Reaction: homolytic and heterolytic bond fission	
9		Types of reagents- electrophiles and nucleophiles	
10		Types of reagents- electrophiles and nucleophiles Types of organic reaction, energy consideration	
11		Methods of determination of reaction mechanism(active intermediate products)	
12		isotopes effects, kinetics and stereochemical studies	
13		Revision on completion of the unit	
14		Alkanes and cycloalkanes: IUPAC nomenclature of branched and unbranched alkanes	
15		classification of alkanes, isomerism in alkanes	
16		methods of formation (Wurtz rxn, Kobe Rxn, Corey House Rxn, Decarboxylation)	
17		physical and chemical reaction of alkanes conformation of alkanes	
19		mechanism of free radical halogenation of alkanes	
20		cycloalkanes-nomenclature, methods of formation,	
21		chemical reaction, Baeyer strain theory and its limitation	
22		Theory of strainless rings	
23		The case of cyclopropane ring: Banana bonds	
24		conformation of cycloalkanes	
25		Revision on completion of the unit	
26		Alkene, Cycloalkenes, Dienes: Nomenclature of alkenes	
27		methods of formation - mechanism of dehydration of alcohols and dehydrogenation of alkyl halides	
28		ragioselectivity in alcohol dehydration	
29		The saytzeff rule	
30		Hofmann elimination	
31		physical properties and relative satbilities of alkenes	
32		Chemical reaction of alkenes- mechanism involved in hydrogenation	
33		electrophilic and free radical addition	
34		Markownikoff's rule	
35		hydroboration- oxidation , oxymercuration reduction	
36		Epoxidation, ozonolysis	
37		polymerization of alkenes	
38		substitution of allylic and vinylic positions	
39		application of ethylene and propene	
40		Methods of formation, conformation and chemical reactions of cycloalkanes	
41		Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes	
42		structure of allenes and butadiene	
43		methods of formation	
44		polymerisation	
45		Chemical reaction- 1,2 and 1,4 addition	
46		Diels- Alder reaction	
47		Revision on completion of the unit	
48		Alkynes and Alkyl Halides: Nomenclature, structure and bonding of alkynes	
49		Methods of formation, chemcial reactions	
50		acidity of alkynes, Mechanism of electroplilic and nucleophilic addition reaction	
51		hydroboration oxidation , metal- ammonia reduction- oxidation	
52	Unit 4	polymerization of alkynes	

54 Unit 4 methods of formation, chemical reactions 55 Unit 4 Mechanism of nucleophilic substitution reaction of alkyl halides 56 Unit 4 SN 1 and SN 2 reaction with energy profile diagrams 57 Unit 4 Elimination reaction 58 Unit 4 Polyhalogen compounds : methods of preperation 59 Unit 4 Properties of chloroform and carbon tetrachloride 60 Unit 4 Revision on completion of the unit 61 Unit 5 Stereochemistry of Organic compounds : Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 enantionmers, stereogenic centre 65 Unit 5 optical activity, properties of enantiomers 66 Unit 5 obital and achiral molecules with two stereogenic centres 67 Unit 5 diastereomers, threo and erthro enantiomers 68 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 Revision on completion of the unit	53	Unit 4	Nomenclature and classification of alkyl halides	
55 Unit 4 Mechanism of nucleophilic substitution reaction of alkyl halides 56 Unit 4 SN 1 and SN 2 reaction with energy profile diagrams 57 Unit 4 Elimination reaction 58 Unit 4 Polyhalogen compounds: methods of preperation 59 Unit 4 Properties of chloroform and carbon tetrachloride 60 Unit 4 Revision on completion of the unit 61 Unit 5 Stereochemistry of Organic compounds: Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 optical activity, properties of enantiomers 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D& L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 74 Unit 5 geometric isomerism in oximes and alicyclic compounds			·	
57 Unit 4 Elimination reaction 58 Unit 4 Polyhalogen compounds: methods of preperation 59 Unit 4 properties of chloroform and carbon tetrachloride 60 Unit 4 Revision on completion of the unit 61 Unit 5 Stereochemistry of Organic compounds: Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 geometric isomerism in oximes and alicyclic compounds	55			
58 Unit 4 Polyhalogen compounds: methods of preperation 59 Unit 4 properties of chloroform and carbon tetrachloride 60 Unit 4 Revision on completion of the unit 61 Unit 5 Stereochemistry of Organic compounds: Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	56			
59 Unit 4 properties of chloroform and carbon tetrachloride 60 Unit 4 Revision on completion of the unit 61 Unit 5 Stereochemistry of Organic compounds: Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 geometric isomerism in oximes and alicyclic compounds	57	Unit 4	Elimination reaction	
60 Unit 4 Revision on completion of the unit 61 Unit 5 Stereochemistry of Organic compounds: Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	58	Unit 4	Polyhalogen compounds : methods of preperation	
61 Unit 5 Stereochemistry of Organic compounds: Concept of isomerism 62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 geometric isomerism in oximes and alicyclic compounds	59	Unit 4	properties of chloroform and carbon tetrachloride	
62 Unit 5 types of isomerism 63 Unit 5 optical isomerism, elements of symmetry 64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 geometric isomerism in oximes and alicyclic compounds	60	Unit 4	Revision on completion of the unit	
Unit 5 optical isomerism, elements of symmetry Unit 5 moleculare chirality Unit 5 enantionmers, stereogenic centre Unit 5 optical activity, properties of enantiomers Unit 5 chiral and achiral molecules with two stereogenic centres Unit 5 diastereomers, threo and erthro enantiomers Unit 5 inversion, retention and racemization Unit 5 Relative and absolute configuration, sequence rule Unit 5 D & L and R & S systems of nomenclature Unit 5 Geometrical isomerism - determination of configuration of geometric isomers Unit 5 E & Z system of nomenclature Unit 5 geometric isomerism in oximes and alicyclic compounds	61	Unit 5	Stereochemistry of Organic compounds: Concept of isomerism	
64 Unit 5 moleculare chirality 65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	62	Unit 5	types of isomerism	
65 Unit 5 enantionmers, stereogenic centre 66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	63	Unit 5	optical isomerism, elements of symmetry	
66 Unit 5 optical activity, properties of enantiomers 67 Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	64	Unit 5		
Unit 5 chiral and achiral molecules with two stereogenic centres 68 Unit 5 diastereomers, threo and erthro enantiomers 69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	65	Unit 5	nantionmers, stereogenic centre	
Unit 5 diastereomers, threo and erthro enantiomers Unit 5 inversion, retention and racemization Unit 5 Relative and absolute configuration, sequence rule Unit 5 D & L and R & S systems of nomenclature Unit 5 Geometrical isomerism - determination of configuration of geometric isomers Unit 5 E & Z system of nomenclature Unit 5 geometric isomerism in oximes and alicyclic compounds	66	Unit 5	optical activity, properties of enantiomers	
69 Unit 5 inversion, retention and racemization 70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	67	Unit 5	chiral and achiral molecules with two stereogenic centres	
70 Unit 5 Relative and absolute configuration, sequence rule 71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	68	Unit 5		
71 Unit 5 D & L and R & S systems of nomenclature 72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	69	Unit 5	inversion, retention and racemization	
72 Unit 5 Geometrical isomerism - determination of configuration of geometric isomers 73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	70	Unit 5	Relative and absolute configuration, sequence rule	
73 Unit 5 E & Z system of nomenclature 74 Unit 5 geometric isomerism in oximes and alicyclic compounds	71	Unit 5	D & L and R & S systems of nomenclature	
74 Unit 5 geometric isomerism in oximes and alicyclic compounds	72	Unit 5	Geometrical isomerism - determination of configuration of geometric isomers	
	73	Unit 5		
75 Unit 5 Revision on completion of the unit	74	Unit 5		
	75	Unit 5	Revision on completion of the unit	

Day/Lecture	Unit
1	
2	
3	
4	
5	
6	
7	
8 to 18	
19 to 20	
21	
22	
23 to 25	
26 to 32	

Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2018 - March 2019)

Subject - Chemistry Practical Teacher - Prof. Deepanshu Pandey

_	Topic				
Physical Chemistry : An introduction					
(A) Any one experiment :					
(i) Determination of melting point					
(ii) Determination of boiling point					

(iii) Weighing and preparation of solution **(B)** Any one experiment:

- (i) Determination of surface tension/percentage composition of given liquid mixture using surface tension method
- (ii) Determination of viscocity/ percentage composition of given liquid mixture using viscocity method.

Inorganic Chemistry: An introdution

(i) Inorganic mixture analysis

Mixture analysis for 2 cation and 2 anions

(ii) Separation of cations by paper chromatography

Organic Chemistry (Any two)

(i) Crystallization

(ii)Sublimation

(iii) Detection of elements

(iv) Identification of functional group

Department of Chemical Science Lesson Plan - B.Sc. II Year (July 2018 - June 2019) Subject - Chemistry Paper I(Physical Chemistry)

Teacher - Prof. Seema Shintre

Unit 1	Topic <u>Thermodynamics</u>	
	Basic concepts - system, surrounding, Extensive and intensive properties, types of process,	
	Exothermic and Endothermic process, reversible and irreversible process, Internal energy	
	First law of thermodynamics, Enthalpy, Heat and work	
	Molar heat capacity, Joule Thomson effect and its coefficient	
	Expansion of ideal gases for isothermal and adiabatic process	
	Second law of thermodynamics, Carnot cycle	
	Carnot theorem, thermodynamic scale of temprature Concept of Entropy and entropy change in Carnot cycle	
	Entropy change of ideal gas in term of P &T and V &T	
	Physical significance of entropy, Claussius inequility	
	Entropy of mixing, entropy and probability	
	Third law of thermodynamics (Nernst heat theoram), work function	
	Concept of Free energy and Gibb's Helmholtz equation in term of work function and internal energy	
	and in term of Free energy and enthalpy	
	Thermochemistry	
	Hess's law and Heat of reaction	
	Bomb colorimeter, Heat of neutralization	
	Bond energy and its factors, Kirchaff's equation	
2	Phase Equilibrium	
	Statement and the meaning of terms: phase, component and the degree of freedom	
	Thermodynamic derivation of the Gibbs phase rule	
	One component system: water system, CO2 system	
	Sulphur system	
	Two component system: solid liquid equilibrium, simple eutectic system: Bi-Cd system	
	Pb-Ag system and desilverisation of lead	
	Solid solution	
	Type B system: Zn-Mg system	
	NaCl-H2O system, copper sulphate water system	
	Liquid liquid mixture	
	Raoult's law and Henry's law	
	Ideal and non-ideal solutions	
	Azeotrops: HCl-H2O and ethanol water system	
	Partial miscible liquids	
	Phenol-water, trimethylamine-water and nicotine-water system	
	Lower and upper consolute temperature, steam distillation	
	Nernst distribution law: thermodynamic derivation, application.	
3	Electrochemistry-I	
	Electrical transport, conduction in metal and electrolyte solutions	
	Resistance, conductance, Specific and equivalent conductivity	
	Measurment of equivalent conductance, effect of dilution on conductivity	
	Migration of ions and Kohlrausch law and application	
	Arrhenius theory of electrolyte dissociation and its limitations	
•	Weak and strong electrolytes, Ostwald's dilution law	
	Debye Huckel theoryad DHO equation	
	Transport number, Hittorf method	
	Moving boundary method	
4	Electrochemistry-II	
·	Basic concept and Reversible electrodes	
	Nernst equation, referance electrode	
	Standard hydrogen electrode(Gas electrode)	
	Calomel electrode(metal insoluble salt electrode)	
	Types of electrochemical cell	
	Application of EMF	
	Electrochemical series and its significance	
	Potentiometric titration, concentration cell with and without transport	
	Relation between pH, pOH and pkw, Buffer solution and its type	
	3	

50		salt of strong acid and weak base	
51		salt of weak acid and strong base	
52		salt of weak acid and weak base	
	5	Surface chemistry	
53		Adsorption, absorption, types of adsorption	
54		adsorption of gases and liquid in solid adsorbate	
55		Freundlich and langmuir adslorption isotherm	
56		Surface area and determination of surface area	
57		Catalysis- Characteristics of catalyzed reactions, classification of catalysis	
58		Application of catalysts, miscellaneous examples	

Department of Chemical Science

Lesson Plan - B.Sc. II Year (July 2018 - June 2019)

Subject - Chemistry Paper II (Inorganic Chemistry)

Teacher - Prof. Seema Shintre

Day/Lecture	Unit	Topic Topic	
	1	Chemistry of elements of first transition series	
1		Characteristics properties of d-block elements- electronic configuration, metallic character	
2		variable oxidation state, colour formation, atomic and ionic radii	
3		complex formation, magnetic property	
4		Catalytic property, formation of interstitial compounds	
5		Binary compounds- oxides	
6		sulphides and halides, carbides	
7		complexes illustrating relative stability of their oxidation states, co-ordination number and geometry	
	2	Chemistry of elements of second and third transition series	
8		General introduction, characteristics- electronic configuration, atomic and ionic radius	
9		Lanthenide contraction, variable oxidation states	
10		Magnetic nature, term symbol, L-S coupling	
11		magnetic succeptibility and its determination by Gouy method	
12		Spectral nature, stereochemistry	
	3	Co-ordination compounds	
13		General introduction, Werner's co-ordination theory and its experimental verification	
14		Nomenclature of co-ordination compounds	
15		Sigdwick electronic concept of co-ordinate bond, Effective atomic number concept	
16		Chelates, inner metallic complex	
17		Isomerism in co-ordination compounds, structural isomerism	
18		stereoisomerism- geometrical and optical isomerism	
19		Valance bond theory of transition metal complex- octahedral complex	
20		Tetrahedral and square planner complex	
		Oxidation and Reduction	
21		oxidation and Reduction, redox reaction, singal electrode potential	
22		redox cycle, redox stability of water- Frost diagram	
23		Latimer and Pourbaix diagrams.	
24		Basic principle in the extraction of metals	
	4	(a) Chemistry of Lanthanide elements	
25		electronic structure, oxidation states	
26		ionic radii and lanthanide contraction	
27		complex formation occurrence and isolation	
28		lanthanide compounds	
		(b) Chemistry of Actinides	
29		General features and chemistry of actinides	
30		chemistry of Np, Pu and Am from U, Similarities between lanthanides and actinides	
	5	Acids and Bases	
31		Arrhenius concept, Bronsted-Lowry concept	
32		Solvent system and Lewis concepts of acids and bases	
33		Lux-Flood theory, Physical properties of a solvent	
34		Types of solvents and their general characteristics	
35		Reactions in non-aqueous solvents with reference to liquid NH ₃	
36		Reactions in non-aqueous solvents with reference to liquid SO2	

Mahara

Day/Lecture	Unit
	1
1	
3	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
	2
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24 25 26 27 28 29	
25	
26	
27	
28	
29	

30	
31	
32	
	3
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
	4
47	
48	
49	
50	
51	
52	
53	
52 53 54 55	
55	
56	
57	
58	
	5
59	
60	
61	
62	

63	
64	
65	
66	
67	
68	
69	
70	

Department of Chemical Science

Lesson Plan - B.Sc. II Year (July 2018 - June 2019)

Subject - Chemistry Paper III (Organic Chemistry)

Teacher - Prof. Seema Shintre

Teacher - Prof. Seema Shintre			
Topic			
Electromagnetic Spectrum: Absorption spectra			
basic concept of spectroscopy			
Beer Lambert law			
Molar absorptivity, Presentation and analysis of UV spectra			
Types of electronic transitions			
effect of conjugation, concept of chromophore and auxochrome			
Bathochromic, hypsochromic, Hyperchromic and hypochromic shifts			
UV spectra of conjugated enes and enones			
IR absorption spectroscopy- Molecular vibrations			
Hookes law, selection rules			
intensity and position of IR bands			
Measurement of IR spectrum, finger print region			
Cheracteristic absorption of various functional groups			
Interpretation of IR spectra of simple organic compounds			
(a) Alcohols			
Classification and nomenclature			
Monohydric alcohols- nomenclature, methods of formation			
reduction of aldehydes, Ketones, carboxylic acids and esters			
Hydrogen bonding, acidic nature			
reaction of alcohols			
Dihydric alcohols- nomenclature, methods of formation			
chemical reactions of vicinal glycols			
oxiidative cleavage and pinacol-pinacolone rearrangement			
Trihydric alcohols- Nomenclature, methods of formation			
chemical reactions of glycerols			
(b) Phenols			
Nomenclature, structure and bonding			
Preparations of phenols, physical properties and acidic characters			
comparative acidic strength of alcohols and phenols			
resonance stablization of phenoxide ions, reactions of phenols			
electrophilic aromatic substitutions, acylation and arboxylation			

mechanism of Fries rearrangement, Claisen rearrangement
Gatermann synthesis, Hauben- Hoesche reaction
Lederer Manasse reaction and Reimer Teiman reaction
Aldehydes and Ketones
Nomenclature, structure of the carbonyl group
synthesis of aldehydes and ketones - synthesis of aldehyde from acid chlorides
synthesis of aldehyde and ketone from 1,3 dithianes
synthesis of ketones from nitrilles and carboxylic acids
physical properties
mechanism of reactions- Aldol condensation and benzoin condensation
Perkin reaction and Knoevengel condensations
condensation with ammonia nd its derivatives
Wittig reaction and Mannich reaction
Use of acetals as protecting groups, oxidation of aldehydes
Baeyer-Villiger oxidation of ketones, cannizaro reaction
MPV, Clemmenson, Wolf Kischner reaction
LiAlH4 and NaBH4 reduction, Helogination
An introduction to alfa, beta unsaturated aldehyde and ketones
(a)Carboxylic acids
Nomenclature ,structure and bonding
physical properties and acidity of carboxylic acids
Preparation and reactions of carboxylic acids
HVZ reaction, synthesis of acid chloride, esters and amides
reduction of carboxylic acids, Mechanism of decarboxylation
Methods and chemical reactions of halo acids, hydroxyl acid
Malic acid, tartaric acid, citric acids
Methods and chemical reactions of unsaturated monocarboxylic acids,
Dicarboxylic acids
(b) Ether
Nomenclature of ether and methods of formation
physical properties and chemical reactions
Cleavage and auto oxidation, Zeisels method
Organic compounds of nitrogen
Preparation of nitro-alkanes and nitro arene
Chemical reactions of nitro-alkanes
Mechanism of nucleophilic substitution in nitro-arenes
Reductions in neutral acidic and alkaline media

Haloarenes: Reactivity, Structure and nomenclature of amines

Physical properties, stereochemistry of amines

Seperation of mixture of primary, secondary and tertiary amines, basicity of amines

Amine salts as phase transfer catalyst, Preparation of alkyl and aryl amines

Gabrial Phthalimide reaction, Hoffmann-Bromamide reaction

Reaction of amines, electrophilic aromatic substitution in aryl amines

Reactions of amines with nitrous acid, Synthetic transformations of aryl diazonium salt

Azo coupling

Department of Chemical Sciences

Lesson Plan - B.Sc. II Year (July 2018 - June 2019)

Subject - Chemistry Practical

Teacher - Prof. Seema Sintre

Day/Lecture	Unit	Topic		
		Inorganic Chemistry		
1		Analysis of inorganic mixture containing five radicals with at least on interfering radicals		
2		Determination of acetic acid in commercial vinager using NaOH		
3		Redox Titration		
4		Estimation of hardness of water by EDTA		
		Physical Chemistry		
5		Determination of transition temperature of given substance by thermometric method		
6		To determine the enthalpy of neutralization of strong acid strong base		
7		Verification of Beer's- Lambert law		
8		To study the phase diagram of two component system by cooling curve method		
		Organic Chemistry		
9		Identification of an organic compound through the functional group analysis, determination		
		of melting point and preparation of suitable derivatives.		
10		Use of Paper chromatography/ Thin layer chromatography:		
		Determination of Rf values, seperation and identification of organic compounds.		
11	a	Seperation of green leaf pigments		
12	b	Seperation of dyes		

Maharaja F

Maharaja Ranjit Singh College of Professional Sciences, Indore

Department of Chemical Science

Lesson Plan - B.Sc. V Sem Chemistry (July 2018 - Dec 2018) Subject - Chemistry

Day/Lecture Unit Topic			
Day/Lecture		Topic Organia Compounds of Nitrogens	
1	I	Organic Compounds of Nitrogen:	
2	I	Preparation, properties and chemical reactions of nitroalkanes and nitroarenes.	
		and introducties.	
3	I	Mechanism of nucleophilic substitution in nitroarenes and their	
3	1	reduction in acidic neutral and alkaline media, picric acids.	
4	T		
4	I	Halonitroarenes; structure and nomenclature, and their activity.	
		Amines structure, and nomenclature, physical properties and	
5	I	stereochemistry, separation of mixture of primary, secondary	
		and tertiary amines.	
6	I	Structural features affecting basicity of amines. Amine salts as	
-		phase transfer catalysts.	
7		Preparation of alkyl and aryl amines (reduction of nitro	
7	I	compounds, nitriles), reductive amination of aldehydic and	
		ketonic compounds,	
		Gabriel – phthalamide reaction, Hoffmann bromamide reaction,	
8	I	Reaction of amines, electrophilic aromatic substitution in aryl	
0	1	amines, reaction of amines with nitrous acid synthetic	
		transformation of aryl diazonium salts, azo coupling.	
9	II	A. Carbohydrates-I	
10	II	Classification and nomenclature	
11	II	monosaccharides	
12	II	Mechanism of Osazone formation	
13	II	Inter conversion of glucose into fructose	
14	II	Ascending and descending series in aldose	
15	II	Configuration of monosaccharides	
16	II	Stereo isomers of erythro and theo sugars	
17	II	Conversion of glucose into mannose	
18	П	Glycosides, determination of the size of the ring of	
	11	monosachharides	
19	II	Ring structure of D(+) glucose	
20	II	Mechanism of mutarotation	
21	II	Structure of ribose and deoxyribose	
22	II	B. Carbohydrates-II	
23	II	Disaccharides introductory idea of maltose, sucrose, and lactose	
		(excluding structure)	
24	II	Polysaccharides introductory idea of starch and	
	II	cellulose(Excluding Structure) Reducing and non-reducing sugars	
25 26	III	A. Photochemistry	
	1111	Electromagnetic radiation, range of different regions of the	
27	III	spectrum	
		spectrum	

28	III	different expression units for energy
29	III	wavelength and frequency
30	III	interaction of radiation with matter
31	III	difference between thermal and photochemical process
32	III	Law of photochemistry
33	III	Grothus Draper Law
34	III	Stark-Einstein Law
35	III	Beer-Lambert Law
36	III	Electronic Transition
37	III	Jablonski Diagram depicting various quantum yield
38	III	B. UV Spectroscopy
39	III	Electronic Excitation
40	III	Elementary Idea of instrument used
41	III	Application to organic molecules
		Woodward-Fieser rule for determining lemda max of enes,
42	III	polyenes and alpha,beta-unsaturated carbonyl compounds
43	IV	A. Bioinorganic Chemistry-I
44	IV	Essential and trace element in biological processes
45	IV	Metalloporphyrins with special reference to haemoglobin and
43		myoglobin
46	IV	Biological role of alkali and alkaline earth metal ions with
40	1 4	special reference of Ca2+.
47	IV	B. Bioinorganic Chemistry-II
48	IV	Role of metal ions in biological process, nitrogen fixation
49	IV	oxygen uptake proteins, cytochromes and ferredoxins.
50	V	A. Hard and Soft Acids and Bases(HSAB)
51	V	Classification of acids and bases as hard and soft
52	V	Pearson's HSAB Concept, Symbiosis
53	V	B. Analytical Chemistry
54	V	Errors, their classification, minimisation of errors, precision
34	V	and accuracy,
55	V	Gravimetric estimation: concept, method and precautions
56	V	Gravimetric estimation of barium and copper
57	V	C. Inorganic Polymer
58	V	Intoduction, scope of inorganic polymers
59	V	special characteristics, Classification and their applications
60	V	Structure and nature of bonding in Silicones and
OU		triphosphonitrilic chloride

Department of Chemical Science

Lesson Plan - B.Sc. V Sem Chemistry (July 2018 - Dec 2018)

Subject - Chemistry Practical

Day/Lecture	Unit	Topic
1	I	Inorganic Chemistry
2	I	To separate and identify inorganic mixture having five radicals with at least one interfering radical
3	I	To separate and identify inorganic mixture having five radicals with at least one interfering radical
4	I	To separate and identify inorganic mixture having five radicals with at least one interfering radical
5	I	Gravimetric Analysis
6	I	To estimate barium as a barium sulphate
7	II	Organic Chemistry Preparation
8	II	A. Acetylation
9	II	B. Benzoylation
10	II	C. meta-dinitrobenzene
11	II	D. Picric Acid

Department of Chemical Science

Lesson Plan - B.Sc. VI Sem Chemistry (Jan 2019 - June 2019)

Subject - Chemistry

Day/Lecture	Unit	Topic Topic	
1	I	A. Amino Acids	
2	I	Classification of Amino Acid	
3	I	Structure, stereochemistry of amino acids	
4	I	Acid base behaviour, isoelectric point	
5	Ţ	General methods of preparation and properties of alpha-amino	
3	Ι	acids	
6	I	Proteins and peptides. Introduction to peptides linkage,	
7	I	End group analysis, classification, properties and structure of	
7	1	proteins (primary, secondary and tertiary).	
8	I	B. Nucleic acids: Introduction of nucleic acids and	
O	1	constituents of nucleic acid,	
9	I	Ribonucleosides, Ribonucleotides,	
10	I	Double helical structure of DNA	
11	I	C. Elementary idea of Fats, Oils & Detergents:	
12	I	Natural fats, edible and industrial oils of vegetable origin,	
12	1	common fatty acids, glycerides,	
13	I	Hydrogenation of unsaturated oils,	
14	I	Saponification value, iodine value, acid value.	
15	II	A. Organometallic Chemistry:	
16	II	Synthesis; structure and bonding in metal carbonyl complexes,	
17	II	Metal olefin complexes and metal alkyne complexes.	
18	II	Oxidative addition reactions.	
19	II	B. Organometallic Compounds:	
20	II	Organomagnesium Compound -	
21	II	Grignard Reagent and Organolithium Compounds,	
22	II	Methods of preparation, structure and synthetic applications.	
23	III	Magnetic properties of transition metal complexes:	
24	III	Magnetic moment	
25	III	(spin only and with L-S coupling),	
26	III	orbital contribution magnetic moment.	
27	III	B. Electronic spectra of transition metal complexes:	
28	III	Spectroscopic ground and excited states,	
29	III	Types of electronic transitions,	
30	III	Selection rules for d-d transitions,	

31	III	Orgel-energy level diagram for d1 to d9 states.
32	III	C. Water Analysis:
33	III	Hardness, types of hardness,
34	III	Acidity and alkalinity, BOD, COD and DO.
35	IV	A. Infrared spectroscopy:
36	IV	Statement of the Born-Oppenheimer approximation,
37	IV	Rotational spectrum of diatomic molecules.
38	IV	Energy levels of a rigid rotator,
39	IV	Selection rule, intensity of absorption bands,
40	IV	Maxwell- Boltzmann distribution and
41	IV	Population of energy levels.
42	IV	B. Energy levels of simple harmonic oscillator,
43	IV	selection rules,
44	IV	Pure vibrational spectrum,
45	11.7	Intensity and qualitative relation of force constant and bond
43	IV	energies,
46	IV	Degree of freedom and
47	IV	Modes of vibration,
48	IV	vibrational frequencies of different functional groups.
49	IV	C. Raman Spectroscopy:
50	IV	Concept of polarizability,
51	IV	Pure rotational and Pure vibrational Raman spectra of diatomic
31		molecules.
52	IV	Selection rules, application of Raman spectrum.
53	V	A. NMR Spectroscopy
54	V	Principle and Instrumentation,
55	V	NMR active nucleus,
56	V	Chemical shift, spin-spin coupling,
57	V	Spectrum of ethanol and ethanal.
58	V	B. Surface Phenomena and Catalysis:
59	V	Adsorption of gases and liquids on solid adsorbent,
60	V	Freundlich and Langmuir adsorption isotherms,
61	V	Determination of surface area,
62	V	Characteristics and mechanism of heterogeneous
02	v	catalysis.

Department of Chemical Science

Lesson Plan - B.Sc. VI Sem Chemistry (Jan 2019 - June 2019)

Subject - Chemistry Practical

Day/Lecture	Unit	Topic	
1	I	Organic Chemistry	
2	I	To separate and identify organic mixture having two solid also prepare their derivatives	
3	I	To separate and identify organic mixture having two solid also prepare their derivatives	
4	I	To separate and identify organic mixture having two solid also prepare their derivatives	
5	I	To separate and identify organic mixture having two solid also prepare their derivatives	
6	II	Physical Instrumentation	
7	II	A. Job's Method	
8	II	B. Mole-ratio method	
9	III	Inorganic Chemistry	
10	III	Effluent Analysis: to identify cations and anions in given water samples.	
11	III	Water Analysis:To determine the dissolve oxygen in given water sample in ppm units.	
12	III	To determine the hardness of water samples.	